两天前,图灵奖得主 Yann LeCun 转载了「自己登上月球去探索」的长篇漫画,引起了网友的热议。

图片

其实,产出这些漫画的研究出自南开大学、字节跳动等机构。在《StoryDiffusion:Consistent Self-Attention for long-range image and video generation》这篇论文中,该研究团队提出了一种名为 StoryDiffusion 的新方法,用于生成一致的图像和视频以讲述复杂故事。

图片

相关项目已经在 GitHub 上获得了 1k 的 Star 量。

图片

GitHub 地址:https://github.com/HVision-NKU/StoryDiffusion

根据项目演示,StoryDiffusion 可以生成各种风格的漫画,在讲述连贯故事的同时,保持了角色风格和服装的一致性。

图片

StoryDiffusion 可以同时保持多个角色的身份,并在一系列图像中生成一致的角色。

图片

此外,StoryDiffusion 还能够以生成的一致图像或用户输入的图像为条件,生成高质量的视频。

图片

图片

我们知道,对于基于扩散的生成模型来说,如何在一系列生成的图像中保持内容一致性,尤其是那些包含复杂主题和细节的图像,是一个重大挑战。

因此,该研究团队提出了一种新的自注意力计算方法,称为一致性自注意力(Consistent Self-Attention),通过在生成图像时建立批内图像之间的联系,以保持人物的一致性,无需训练即可生成主题一致的图像。

为了将这种方法扩展到长视频生成,该研究团队引入了语义运动预测器 (Semantic Motion Predictor),将图像编码到语义空间,预测语义空间中的运动,以生成视频。这比仅基于潜在空间的运动预测更加稳定。

然后进行框架整合,将一致性自注意力和语义运动预测器结合,可以生成一致的视频,讲述复杂的故事。相比现有方法,StoryDiffusion 可以生成更流畅、连贯的视频。

图片                                图 1: 通过该团队 StroyDiffusion 生成的图像和视频

方法概览

该研究团队的方法可以分为两个阶段,如图 2 和图 3 所示。

在第一阶段,StoryDiffusion 使用一致性自注意力(Consistent Self-Attention)以无训练的方式生成主题一致的图像。这些一致的图像可以直接用于讲故事,也可以作为第二阶段的输入。在第二阶段,StoryDiffusion 基于这些一致的图像创建一致的过渡视频。

图片                                 图 2:StoryDiffusion 生成主题一致图像的流程概述

图片                               图3:生成转场视频以获得主题一致图像的方法。

无训练的一致图像生成

研究团队介绍了「如何以无训练的方式生成主题一致的图像」的方法。解决上述问题的关键在于如何保持一批图像中角色的一致性。这意味着在生成过程中,他们需要建立一批图像之间的联系。

在重新审视了扩散模型中不同注意力机制的作用之后,他们受到启发,探索利用自注意力来保持一批图像内图像的一致性,并提出了一致性自注意力(Consistent Self-Attention)。

研究团队将一致性自注意力插入到现有图像生成模型的 U-Net 架构中原有自注意力的位置,并重用原有的自注意力权重,以保持无需训练和即插即用的特性。

鉴于配对 tokens,研究团队的方法在一批图像上执行自注意力,促进不同图像特征之间的交互。这种类型的交互促使模型在生成过程中对角色、面部和服装的收敛。尽管一致性自注意力方法简单且无需训练,但它可以有效地生成主题一致的图像。

为了更清楚地说明,研究团队在算法 1 中展示了伪代码

图片

用于视频生成的语义运动预测器

研究团队提出了语义运动预测器(Semantic Motion Predictor),它将图像编码到图像语义空间中以捕获空间信息,从而实现从一个给定的起始帧和结束帧中进行更准确的运动预测。

更具体地说,在该团队所提出的语义运动预测器中,他们首先使用一个函数 E 来建立从 RGB 图像到图像语义空间向量的映射,对空间信息进行编码。

该团队并没有直接使用线性层作为函数 E,与之代替的是利用一个预训练的 CLIP 图像编码器作为函数 E,以利用其零样本(zero-shot)能力来提升性能。

使用函数 E,给定的起始帧 F_s 和结束帧 F_e 被压缩成图像语义空间向量 K_s 和 K_e。

图片

实验结果

在生成主题一致图像方面,由于该团队的方法是无需训练且可即插即用的,所以他们在 Stable Diffusion XL 和 Stable Diffusion 1.5 两个版本上都实现了这一方法。为了与对比模型保持一致,他们在 Stable-XL 模型上使用相同的预训练权重进行比较。

针对生成一致性视频,研究者基于 Stable Diffusion 1.5 特化模型实现了他们的研究方法,并整合了一个预训练的时间模块以支持视频生成。所有的对比模型都采用了 7.5 classifier-free 指导得分和 50-step DDIM 采样。

一致性图像生成比较

该团队通过与两种最新的 ID 保存方法 ——IP-Adapter 和 Photo Maker—— 进行比较,评估了他们生成主题一致图像的方法。

为了测试性能,他们使用 GPT-4 生成了二十个角色指令和一百个活动指令,以描述特定的活动。

定性结果如图 4 所示:「StoryDiffusion 能够生成高度一致的图像。而其他方法,如 IP-Adapter 和 PhotoMaker,可能会产生服饰不一致或文本可控性降低的图像。」

图片                                图4: 与目前方法在一致性图像生成上的对比结果图

研究者们在表 1 中展示了定量比较的结果。该结果显示:「该团队的 StoryDiffusion 在两个定量指标上都取得了最佳性能,这表明该方法在保持角色特性的同时,还能够很好地符合提示描述,并显示出其稳健性。」

图片                                 表 1: 一致性图像生成的定量对比结果

转场视频生成的对比

在转场视频生成方面,研究团队与两种最先进的方法 ——SparseCtrl 和 SEINE—— 进行了比较,以评估性能。

他们进行了转场视频生成的定性对比,并将结果展示在图 5 中。结果显示:「该团队的 StoryDiffusion 显著优于 SEINE 和 SparseCtrl,并且生成的转场视频既平滑又符合物理原理。」

图片                                 图 5: 目前使用各种最先进方法的转场视频生成对比

他们还将该方法与 SEINE 和 SparseCtrl 进行了比较,并使用了包括 LPIPSfirst、LPIPS-frames、CLIPSIM-first 和 CLIPSIM-frames 在内的四个定量指标,如表 2 所示。

图片                                 表 2: 与目前最先进转场视频生成模型的定量对比